Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells.
نویسندگان
چکیده
Syndecan-2 is a transmembrane heparan sulfate proteoglycan whose function at the cell surface is unclear. In this study, we examined the function of syndecan-2 in colon cancer cell lines. In several colon cancer cell lines, syndecan-2 was highly expressed compared with normal cell lines. In contrast, syndecan-1 and -4 were decreased. Cell biological studies using the extracellular domain of recombinant syndecan-2 (2E) or spreading assay with syndecan-2 antibody-coated plates showed that syndecan-2 mediated adhesion and cytoskeletal organization of colon cancer cells. This interaction was critical for the proliferation of colon carcinoma cells. Blocking with 2E or antisense syndecan-2 cDNA induced G(0)/G(1) cell cycle arrest with concomitantly increased expression of p21, p27, and p53. Furthermore, blocking of syndecan-2 through antisense syndecan-2 cDNA significantly reduced tumorigenic activity in colon carcinoma cells. Therefore, increased syndecan-2 expression appears to be a critical for colon carcinoma cell behavior, and syndecan-2 regulates tumorigenic activity through regulation of adhesion and proliferation in colon carcinoma cells.
منابع مشابه
Focal adhesion kinase regulates syndecan-2-mediated tumorigenic activity of HT1080 fibrosarcoma cells.
Expression of syndecan-2, a transmembrane heparan sulfate proteoglycan, is crucial for the tumorigenic activity in colon carcinoma cells. However, despite the high-level expression of syndecan-2 in mesenchymal cells, few studies have addressed the function of syndecan-2 in sarcoma cells. In HT1080 fibrosarcoma cells, we found that syndecan-2 regulated migration, invasion into Matrigel, and anch...
متن کاملInterference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation.
Tenascin-C is an adhesion-modulatory extracellular matrix molecule that is highly expressed in tumors. To investigate the effect of tenascin-C on tumor cells, we analyzed its antiadhesive nature and effect on tumor cell proliferation in a fibronectin context. Glioblastoma and breast carcinoma cell adhesion was compromised by a mixed fibronectin/tenascin-C substratum, which concomitantly caused ...
متن کاملFibronectin Blocks Cell Adhesion and Stimulates Tumor Cell Interference of Tenascin-C with Syndecan-4 Binding to
Tenascin-C is an adhesion-modulatory extracellular matrix molecule that is highly expressed in tumors. To investigate the effect of tenascin-C on tumor cells, we analyzed its antiadhesive nature and effect on tumor cell proliferation in a fibronectin context. Glioblastoma and breast carcinoma cell adhesion was compromised by a mixed fibronectin/tenascin-C substratum, which concomitantly caused ...
متن کاملSyndecan-2 cytoplasmic domain up-regulates matrix metalloproteinase-7 expression via the protein kinase Cγ-mediated FAK/ERK signaling pathway in colon cancer.
The syndecan family of heparan sulfate proteoglycans contributes to cell adhesion and communication by serving as co-receptors for cell signaling and extracellular matrix molecules. Syndecan-2 is located at the cell surface, and we previously reported that it induces matrix metalloproteinase-7 (MMP-7) expression in colon cancer cells. However, the underlying regulatory mechanisms are unknown. H...
متن کاملSyndecan-2 cytoplasmic domain upregulates Matrix Metalloproteinase-7 expression via Protein KinaseCγ mediated FAK/ERK signaling pathway in colon cancer
The syndecan family of heparan sulfate proteoglycans contribute to cell adhesion and communication by serving as co-receptors for cell signaling and extracellular matrix molecules. Syndecan-2 is located at the cell surface, and we previously reported that it induces matrix metalloproteinase-7 (MMP-7) expression in colon cancer cells. However, the underlying regulatory mechanisms are unknown. He...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 33 شماره
صفحات -
تاریخ انتشار 2002